If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2+7=707
We move all terms to the left:
7x^2+7-(707)=0
We add all the numbers together, and all the variables
7x^2-700=0
a = 7; b = 0; c = -700;
Δ = b2-4ac
Δ = 02-4·7·(-700)
Δ = 19600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{19600}=140$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-140}{2*7}=\frac{-140}{14} =-10 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+140}{2*7}=\frac{140}{14} =10 $
| 72/p=8 | | x³-81=0 | | 80+3x=53 | | 8-3(-4n+3)=-85 | | 25-3r=40 | | 5d+7=8d-50 | | 7x+7=707 | | 10z−5z=15 | | 9+2d=–1 | | Y=6x-25=4x+15 | | 4n^2+10=130 | | 18h2–98=0 | | 3x−12=2x+4x+9 | | -6(8r-8)+7=-137 | | 3(32-1.3y)+4y=96 | | 10+6b=–2+8b | | -3x-15=24 | | 2/3(x-9)=-72 | | 4=4f-12 | | 150+20x=800 | | .75(18+s)=31.50 | | 7r−29=62 | | -8=-4(2m+8 | | -19x-19=19=-19x-19 | | 3x+6+13x-4=130 | | 4^3x=1056 | | v^2+6v-19=0 | | 9^3-9x=700 | | 2.3+x=7 | | 7p+13=`8 | | 6=-2x*8 | | (2v)+(v+26)*2=180 |